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and 
(18) 

after having gone through a long algebra, we 
find the expressions for the effective second
order elastic constants as follows: 

Cll = Cll + 1/ (2c u + 2 C12 + Cll l + 2c112) 

+ 1/2(- i c ll - 2C12 + k lll + 5c112 + C123 

+ !cUll+ 2c1l12+ Cl122+ C1123) (19) 

C I2 = CI2 +1/ (-CI I - C12 +2C11 2 + C123 ) 

+1/2( Cll + k 12 - !cll1- C112 

(20) 

C44 = C44 + 1/ (CII + 2C12 + C44 + C 144 + 2C166 ) 

+1/2(-C11 - 2C12 - iC44 +tclll 

+ 3c 112 +CI 23 + CI44+ 2cI66 

+kl144 + CI155 + 2C1255 + CI266 )' (21) 

Where c !-'v, C!-'VA and C!-'vA(; are the second-, 
third- and fourth-order elastic constants of 
crystal in Voigt's notation, respectively, and 
they are expressed in accordance with the 
thermodynamic definition [3]. 

It may be noted that, in equations (19-21) , 
the coefficients of the terms in 1/ with the 
second- and third-order elastic constants are 
the conventional expressions for the effective 
elastic constants [1,4-6] and they agree with 
those derived initially by Birch[l] when the 
third-order elastic constants in Birch's defini
tion are converted into those of more general 
thermodynamic definition. * However, the 
coefficients of the terms in 1/2 in equations (20) 
and (21) are at variance with ones given by 

*The relations between the C" .A defined by Brligger 
(c~~A) and those by Birch (~tA) are: efrl = 6efl" efr. 
= 2ef12' cff3 = efJ3, c9.r6 = ic9J6, efI. = icri, , and eflG 
= tefJ6 ' It is noted that the relation between Birch's C'5" 

and Briigger's C4 56 should be as given in this paper, 
provided C456 term in the expression of the strain energy 
is [ic456 ( 1/'21/231/31 + 1/2.1/321/13) ]. However, if the term in 
the expression of the strain energy is [C456 ( 1/ 121/231/3' + 
1/211/321/13) ] as in Birch's original paper (e.g. equation 12 
off 1]), the relation should be c9.r6 = tc9Js. 

Ghate[6]. In light of the present analysis, the 
writer believes that the minus signs of the 
quantities Cll and CI2 found in the 1/2 term of 
Ghate's equation (23) should have been pLus 
signs. And, as for the expression for C44, 

the quantity (+icu44) should be found in the 
1/2 term of Ghate's equation (24). 

3. THE ULTRASONIC EFFECTIVE ELASTIC 
CONSTANTS 

The expressions of the effective elastic 
constants as given by equations (19-21) can 
be either the adiabatic or isothermal expres
sions, and the proper designation of these is 
obviously done b~ adding the proper super
script either's' or 'T' to all the elastic constants. 
The acoustic data resulting from the usual 
acoustic experiments with pressure are neither 
thermodynamically adiabatic nor thermo
dynamically isothermal quantities, but they 
are 'thermodynamically mixed ' isothermal
adiabatic quantities [7]. Thus, in this section, 
we seek for the expressions of the effective 
elastic constants that may be resulting from 
the ultrasonic-pressure experiments at high 
pressures. 

Recalling the usual behaviors of ultrasonic 
wave velocities in the medium of a cubic 
crystal [8, 9], we note that a longitudinal 
stiffness Cll and shear stiffness C44 result 
directly from measurements of the longitudi
nal and transverse wave velocities in the [001] 
direction of the crystal, respectively. If one 
measures a transverse wave velocity in [110] 
polarized in the [1 TO] direction, the resulting 
stiffness constant is (c11 - C12) /2. Thus, from 
this , one finds immediately the elastic constant 
C12 as a typical procedure. Following exactly 
the same procedure as the above but subjected 
to hydrostatic pressure, we find the uLtrasonic 
effective elastic constants of cubic crystals as: 

Cl1(ultrasonic) = ch +1/(cft + Cain + 3BT) 

+ 1/ 2 (-tcfl + Ca ll1 +tcd''' 



-- ----------------------------.... --------~~~~~~ ~ 

I 

420 D. H. CHUNG 

C!2( UltrasoniC> = Cf2 +T} (ch + Cblll - 3BT) 

+ T} 2(- tcf2 + Cb"'+ C e"' + kn23 

- t c aT - C/ + 3BT) (23) 

C 44<ultrasonic> = C44 + T} (C44 + C c III + 3B1') 

+T}2(-!C44 + Cc"' + ! CI"' + Cy'" 

+~Ca1' + C/ - 3BT). (24) 

Where B1' = (Cfl + 2 cf2) /3 and the C ; are 

Ca = Cll! + 2 C1l2 

Cb = 2 CU 2 + C123 

C C = C144 + 2c166 

Cd = CU ll +2C1l12 

C e = CU !2 + Cl1 22 + CU23 

Cl = Cll44 + 2 c U55 

Cy = 2 C1255 + C1266 ' 

(25) 
(26) 
(27) 
(28) 
(29) 
(30) 
(31) 

The superscripts 's', ' T' and 'm' designate 
thermodynamically adiabatic, thermodynami
cally isothermal, and thermodynamicaLLy 
mixed elastic constants, respectively. Since 
the C; are related to the pressure derivatives 
of the linear elastic constants C/LV, these 
relationships are to be found. 

4.RELATION OF PRESSURE DERIVATIVES OF THE 

EFFECTIVE ELASTIC CONSTANTS TO PARTIAL 
CONTRACTIONS OF THE mGHER-ORDER 

ELASTIC CONSTANTS 

The pressure-dependent second-order 
elastic constants are [7, 10] 

A [a 2 U (V" , s, ii )] 
Ct kl (P) = VC a a T}ij T} kl JI" 

+ PDijkl 
S = ccnst. ,, =.1 

(32) 

where Dijkl = (jU(jk!- (jil(jjk - (jik(jj!. V denotes 
the volume of crystal at reference state 
characterized by the hydrostatic pressure P, 
and ii is the strain tensor corresponding to an 
arbitrarily deformed state characterized by 
that pressure P. VC is defined by the relation 
(V/V") = A3, where A is a factor given by the 

coordinates of a material point in two reference 
states ai and ai according to (ai/aV = A. The 
Lagrangian strain tensors corresponding to 
these two reference states are T}ij and T}u, and 
they are related by 

where E = H A 2 - 1). Since from thermodyna
mics (aJap)T=-(V/BT)(a/aV)T and (aA/aV)o = 
t Vc, we find by differentiating equation (32) 
that 

(
aCt kl) = __ 1_[~ {a

2
U (V", s, ii) } 

ap T 3RT VC aT}ijaT}kl vo 
S = const. 
,, = 0 

(33) 

Note that the first term in equation (33) is by 
definition the zero-pressure second-order 
elastic constants. The second term is, how
ever, thermodynamically mixed third-order 
elastic constants at zero pressure. Thus, 
from equation (33), it folJows that[7] 

(a~;kl) T = -3~7'[ Ct kl+ CVklmmJ + DUkl (34) 

where 

(35) 

Ye is the Griineisen constant, f3 is the coeffi
cient of volume expansion, and A is the ratio 
of the adiabatic bulk modulus to the isothermal 
bulk modulus and it is given by A = 1 + T{3.yc. 
The quantities given by equation (35) are the 
primary experimental quantities which result 
from the usual ultrasonic-pressure experi
ments at low pressures. For cubic crystals, 
equation (35) reduces to: 


